Human-like neural activity detected in lab-grown brains

Published August 30, 2019
In this photo recieved by AFP on August 29, 2019 from Muotri Lab at UC San Diego, an image shows pea-size brain organoids at 10 months old. — HO/Muotri Lab/AFP
In this photo recieved by AFP on August 29, 2019 from Muotri Lab at UC San Diego, an image shows pea-size brain organoids at 10 months old. — HO/Muotri Lab/AFP

WASHINGTON: Scientists reported on Thursday they had picked up human-like electrical activity in lab-grown brains for the first time, paving the way to model neurological conditions and answer fundamental questions on how our gray matter develops.

It’s not clear whether the pea-sized brains are conscious: the team behind the breakthrough suspect they’re not because the activity resembles that of preterm babies, but they cannot say for certain, opening up a new ethical dimension to this area of research.

So-called “cerebral organoids” derived from adult stem cells have been around for a decade or so but have never previously developed functional neural networks.

“If you had asked me five years ago ‘Would you think that a brain organoid would ever have a sophisticated network able to generate a brain oscillation?’ I would say no,” said Alysson Muotri, a biologist at the University of California San Diego.

A paper published by Muotri and his colleagues in the journal Cell Press said that two factors were responsible for the breakthrough. The first was a better procedure to grow stem cells, including optimising the culture medium formula. The second was initially surprising, but also intuitive when the researchers thought about it: simply allowing the neurons adequate time to develop, just as babies’ brains develop in the womb.

The team began to detect bursts of brain waves from organoids from about two months. The signals were sparse at first and all at the same frequency, a pattern seen in very immature human brains. But as they grew, they produced waves at different frequencies, and the signals appeared more regularly, suggesting further development of their neural networks.

Researchers then compared the brain wave patterns with those of human brains in early development, by training a machine learning algorithm with the activity recorded from 39 prematurely born babies.

The programme was successful in predicting how many weeks the organoids had been developing in their dishes, suggesting they shared a similar growth trajectory to brains in their natural setting.

Published in Dawn, August 30th, 2019

Opinion

Editorial

Judiciary’s SOS
Updated 28 Mar, 2024

Judiciary’s SOS

The ball is now in CJP Isa’s court, and he will feel pressure to take action.
Data protection
28 Mar, 2024

Data protection

WHAT do we want? Data protection laws. When do we want them? Immediately. Without delay, if we are to prevent ...
Selling humans
28 Mar, 2024

Selling humans

HUMAN traders feed off economic distress; they peddle promises of a better life to the impoverished who, mired in...
New terror wave
Updated 27 Mar, 2024

New terror wave

The time has come for decisive government action against militancy.
Development costs
27 Mar, 2024

Development costs

A HEFTY escalation of 30pc in the cost of ongoing federal development schemes is one of the many decisions where the...
Aitchison controversy
Updated 27 Mar, 2024

Aitchison controversy

It is hoped that higher authorities realise that politics and nepotism have no place in schools.