Critics say the production of some biofuels can occupy land that would otherwise be used for agricultural purposes, thus limiting food and water resources for a rapidly rising world population. – AP Photo

Scientists have found a way of turning plant matter into the building blocks of common plastics using a nanotechnology process that offers an alternative to oil-based production.

The team from Utrecht University and Dow Chemical Co produced ethylene and propylene - precursors of materials found in everything from CDs to carrier bags and carpets - after developing a new kind of iron catalyst made of nanoparticles.

Existing bioplastics, which are made from crops such as corn and sugar, have only limited use as they are not exact substitutes for oil-based products.

The new system, by contrast, produces chemicals that are the same as those made in petrochemical works, allowing them to be used in a wide range of industries.

This also means they will not be biodegradable, although they will be made from renewable resources.

Researcher Krijn De Jong and his colleagues envisage using non-food sources of biomass for the new process, such as fast-growing trees or grasses, rather than traditional crops, in order to reduce competition for resources between food and fuel.

Plastics made from biomass could, however, be vulnerable to the same criticism that has beset biofuel production.

Critics say the production of some biofuels can occupy land that would otherwise be used for agricultural purposes, thus limiting food and water resources for a rapidly rising world population.

Some biofuel production could also increase carbon emissions, especially if rainforests are cut down to facilitate production.

The research by De Jong and his colleagues, which was published on Thursday in the journal Science, is still at an early stage. It now requires larger-scale testing and pilot projects, so it will not reach the market for several years.

 Rising demand

Diminishing reserves of fossil fuels and rising greenhouse gas emissions suggest there should be increased demand for bioplastics. But that argument could be disrupted by recent vast finds of shale gas, which now provide a cheap alternative feedstock for ethylene in the United States.

The Dutch-designed catalysts consist of tiny nanoparticles separated from each other on carbon nanofibres. In laboratory tests, the catalysts proved highly effective at converting biomass-derived synthesis gas - a mix for hydrogen and carbon monoxide - in ethylene and propylene.

Importantly, the process worked without producing large amounts of methane, an unwanted byproduct of another catalytic process using large iron particles.

The team now plan to increase catalyst production by linking with experts from Johnson Matthey, the world's largest supplier of catalytic converters for vehicles.

Nanotechnology, which involves designing and manufacturing materials on the scale of one-billionth of a metre, is a rapidly expanding area of materials science with applications in medicine, electronics and coatings.

Opinion

Editorial

IMF’s unease
Updated 24 May, 2024

IMF’s unease

It is clear that the next phase of economic stabilisation will be very tough for most of the population.
Belated recognition
24 May, 2024

Belated recognition

WITH Wednesday’s announcement by three European states that they intend to recognise Palestine as a state later...
App for GBV survivors
24 May, 2024

App for GBV survivors

GENDER-based violence is caught between two worlds: one sees it as a crime, the other as ‘convention’. The ...
Energy inflation
Updated 23 May, 2024

Energy inflation

The widening gap between the haves and have-nots is already tearing apart Pakistan’s social fabric.
Culture of violence
23 May, 2024

Culture of violence

WHILE political differences are part of the democratic process, there can be no justification for such disagreements...
Flooding threats
23 May, 2024

Flooding threats

WITH temperatures in GB and KP forecasted to be four to six degrees higher than normal this week, the threat of...